HOMEWORK II
(Due March 06, 2006)

Biri biterken öhürū de baslar, biktum ullah (E. Koray)

Q1: Let us consider the Dirac equation with a potential \(V(z) \) defined in the half space \(x^3 = z \geq 0 \):

\[
\{i\gamma^\mu \partial_\mu - m - V(z)\} \psi = 0.
\]

The system is invariant under translations in the \(x^1 \) and \(x^2 \) directions as well as rotations around the \(x^3 \) axis. Therefore, without loss of generality, we can make the following ansatz for the solutions:

\[
\psi(x) = e^{-iE_t + ip_1 x^1 + ip_2 x^2} \left(\begin{array}{c} \phi(z) \\ \chi(z) \end{array} \right),
\]

where \(\phi = \left(\begin{array}{c} \phi_1 \\ \phi_2 \end{array} \right) \) and \(\chi = \left(\begin{array}{c} \chi_1 \\ \chi_2 \end{array} \right) \) are two-component spinors. Use the standard representation of the Dirac matrices.

a) Find a set of first order differential equations for \(\phi \) and \(\chi \).

b) Derive second-order differential equations for \(\phi \pm i\chi \).

c) Assuming \(m = 0 \), \(p_1 = p_2 = 0 \) and \(V(z) = z \geq 0 \), determine the eigenvalues \(E^2 \).

d) Consider the solutions with the smallest \(E^2 \) in the previous part and \(\sigma_3 = +1 \). Determine the eigenfunctions \(\phi_1 \) and \(\chi_1 \) and the corresponding eigenvalues \(E \).

Q2: For this question, you need to do a little literature search. Give your references properly. I don’t expect you to give a detailed account, but in no less than 1 page for each question, explain

a) What Zitterbewegung is ?

b) What Klein paradox is ?