PHYS 431
Problem Set II

Notes: Some more problems to be solved.

Angular Momentum Eigenstates

1. Compute the following expectation values in state $|j, m\rangle$.
 (a) $\langle J_x J_y \rangle$. (Is the result you obtained real? Or is it complex? Is there a problem if it is complex? Is $J_x J_y$ a hermitian operator? Is this an observable?)
 (b) $\langle J_y J_x \rangle$. (The same questions above can be asked here too.)
 (c) What is the difference between the answers of (a) and (b), i.e., $\langle J_x J_y \rangle - \langle J_y J_x \rangle = ?$
 (d) What is the sum, i.e., $\langle J_x J_y + J_y J_x \rangle = ?$
 (e) Let ϕ be an arbitrary angle. Then $\hat{n} = \cos \phi \hat{i} + \sin \phi \hat{j}$ is an arbitrary unit vector on xy-plane. The component of \vec{J} along \hat{n} is then
 $$J_n = \hat{n} \cdot \vec{J} = \cos \phi J_x + \sin \phi J_y .$$
 Show that, if the value of $\langle J^2_n \rangle$ does not depend on ϕ, then we must necessarily have $\langle J^2_x \rangle = \langle J^2_y \rangle$ and $\langle J_x J_y + J_y J_x \rangle = 0$.

2. Show that $\langle J^2_x J_y \rangle = 0$ in states $|j, m\rangle$.

3. Consider the state $|3, 2\rangle$ and compute the following
 (a) $\langle J_x \rangle$, $\langle J_y \rangle$ and $\langle J_z \rangle$. Also write $\langle \vec{J} \rangle$.
 (b) $\langle J^2_x \rangle$, $\langle J^2_y \rangle$ and $\langle J^2_z \rangle$. Also compute $\langle J^2_x + J^2_y + J^2_z \rangle$ and compute $\langle J^2 \rangle$.
 (c) ΔJ_x, ΔJ_y and ΔJ_z. Are these consistent with the known commutators $[J_x, J_z]$ etc.?
 (d) If $A = J^2$ is considered as an observable, what is ΔA? If $B = J^2_x + J^2_y$, what is ΔB?
 (e) What is $\langle J_x J_y \rangle$ and $\langle J_y J_x \rangle$? Also compute $\langle J_x J_y + J_y J_x \rangle$.

4. Consider the state
 $$|\psi\rangle = N\left(3 |3, 2\rangle + (1 + 2i) |3, 1\rangle \right) .$$
 (1)
 (a) Find a value for N so that $|\psi\rangle$ is normalized.
 (b) Find $\langle J_+ \rangle$ and use this to find $\langle J_- \rangle$, $\langle J_x \rangle$ and $\langle J_y \rangle$.
 (c) Find $\langle J_z \rangle$.
 (d) What is $\langle \vec{J} \rangle$?
 (e) First compute $J_x |\psi\rangle$ and using the norm of the result find $\langle J^2_x \rangle$.

1
(e') This time, first compute \(J_x^2 |\psi\rangle \) and use this to find \(\langle J_x^2 \rangle \).

(f) Find the uncertainties \(\Delta J_x, \Delta J_y \) and \(\Delta J_z \). Also find \(\Delta A \) where \(A = J^2 \).

Rotation

5. Consider a system which is initially prepared to be in the state \(|\psi\rangle \) given in Eq. (1) in problem 4. Suppose that the system is rotated around the \(z \)-axis by \(\alpha = \pi/2 \) radians. As a result of this the state changes to the rotated state \(|\psi'\rangle = D(z, \alpha) |\psi\rangle \).

(a) What is \(|\psi'\rangle \)?

(b) Find the expectation value \(\langle \vec{J} \rangle' \) in state \(|\psi'\rangle \).

(c) Compare \(\langle \vec{J} \rangle' \) with \(\langle \vec{J} \rangle \) found in 4 (d). Is it rotated in the way that you expect?

6. Consider the state

\[
|\phi\rangle = \frac{|1,1\rangle + |1,-1\rangle}{\sqrt{2}}
\]

(a) By computing show that \(\langle \vec{J} \rangle = 0 \).

(b) Even though the average angular momentum is zero, this state is not rotationally symmetric. Specifically, if you rotate this system around the \(z \) axis by \(\alpha \) radians \((0 < \alpha < 2\pi)\), then you get a state different from \(|\phi\rangle \). In other words, show that

\[
|\phi_{\text{rotated}}\rangle = D(z, \alpha) |\phi\rangle \neq (\text{phase factor}) |\phi\rangle
\]

Measurement

7. Consider the state

\[
|\psi\rangle = N\left((1 + 4i) |3,2\rangle + (2 + 3i) |2,2\rangle + (3 - i) |2,1\rangle \right)
\]

(a) Find a value for \(N \) so that \(|\psi\rangle \) is normalized.

(b) Suppose that \(J_z \) is measured. Construct a table that shows (i) the outcomes, (ii) their probabilities and (iii) the final collapsed state.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Probabilities</th>
<th>Final state</th>
</tr>
</thead>
</table>

(b') Use the table above to compute \(\langle J_z \rangle, \langle J_z^2 \rangle, \langle J_z^3 \rangle \) and \(\Delta J_z \). (Use statistical arguments, not expectation values.)

(c) Suppose that \(J^2 \) is measured. Make a similar table showing the measurement outcomes, probabilities and the collapsed states.

(c') Use the table above to compute \(\langle J^2 \rangle \).

(d) Suppose that \(B = J_x^2 + J_y^2 \) is measured. Make a similar table showing the measurement outcomes, probabilities and the collapsed states.

(d') Use the table above to compute \(\langle J_x^2 + J_y^2 \rangle \).